Archive for year: 2020

Researchers’ Night 2020

Project partners participated in the online European Researchers’ Night 2020, organized in Barcelona. Here is the link to the video presentation (in Spanish).

Webinar “Hidrógeno. Vector energético de una economía descarbonizada” (spanish)

Our project coordinator Albert Tarancón has been hosted by Fundación Naturgy for a webinar on status and future of hydrogen technology. The book “Hidrógeno. Vector energético de una economía descarbonizada”, realized by IREC – Institut de Recerca en Energia de Catalunya has been presented. Here is the link to the video of the event. and for book download.

PhD position at LMGP/LEPMI Grenoble

Interested in being part of Harvestore? The Materials and Physical Engineering Laboratory (LMGP) and the Laboratory of Electrochemistry and Physical-Chemistry of Materials and Interfaces (LEPMI) in Grenoble offer a PhD project on design and characterization of advances energy materials for micro-cell applications. Check this out!

Atmospheric pressure Spatial Atomic Layer Deposition (AP-SALD)

AP-SALD is a rather recent alternative approach to ALD that is faster (up to two orders of magnitude) and less expensive (since it can be easily implemented at atmospheric pressure) than ALD.  This opens new fields of industrial applications for flexible and large substrates (OLEDs, flat displays, photovoltaic cells, etc).

In SALD, the precursors are dosed continuously in different locations (separation of precursors in space), thus eliminating the need for the purge steps of conventional ALD (where precursors are separated in time, Figure 1). This results in much faster deposition rates than conventional ALD (up to two orders of magnitude, reaching nm/s). In addition, SALD offers plenty of flexibility in terms of design and is fully compatible with high throughput processing methods such as roll-to-roll. Finally, because it can be implemented easily at atmospheric pressure, it can be readily scalable as well. As a result, SALD is receiving increasing interest and attention over the last years since it has the potential to become a widespread laboratory and industrial deposition method for multiple applications including electronics, optoelectronics, textiles, paper, etc. 

[legende-image]1383921695955[/legende-image]
http://www.lmgp.grenoble-inp.fr/medias/photo/sald-2_1418313812431-jpg?ID_FICHE=554502
Figure 1.  Scheme of conventional (temporal) ALD and Spatial ALD

The Materials and Physical Engineering laboratory in Grenoble (LMGP, a mixed unit between the CNRS and Grenoble INP), partner of Harvestore, if one of the few groups to develop SALD around the world. The approach used is based on a gas injection manifold where the precursor and inert gas are distributed along parallel channels, the close proximity of the substrate ensuring and efficient separation of the precursors, as shown schematically in Figure 2.

Figure 2. Scheme of the close-proximity SALD approach used in LMGP.

The LMGP designs and develops its own systems, and currently has a first prototype that has been working since 2015, while a second one is currently being implemented for large area deposition (tens of cm2). The materials already available are ZnO, Al2O3, Al:ZnO, TiO2, MnO, Cu2O, and SiOx.

The SALD team is currently developing new materials to be applied to the deposition of components for micro harvestorers, and to demonstrate large-area, high –throughput fabrication of such devices.

More information on the research related to SALD in the LMGP can be found in the following links and references below:

http://www.lmgp.grenoble-inp.fr/en/research/spatial-ald

http://www.lmgp.grenoble-inp.fr/en/research/spatial-atomic-layer-deposition

Refs:

  1. Muñoz-Rojas D, Maindron T, Esteve A, Piallat F, Kools JCS, Decams J. Speeding up the unique assets of atomic layer deposition. Mater Today Chem. 2019;12:96–120.
  2. Muñoz-Rojas D, Viet Huong Nguyen, Masse de la Huerta C, Jiménez C, Bellet D. Spatial Atomic Layer Deposition. In: Chemical Vapor Deposition for Nanotechnology. Intech open; 2019. OPEN ACCESS : https://www.intechopen.com/books/chemical-vapor-deposition-for-nanotechnology/spatial-atomic-layer-deposition
  3. Muñoz-Rojas D, MacManus-Driscoll J. Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics. Mater Horizons [Internet]. 2014; 1: 314–20.

Article by David Muñoz-Rojas.

“The power of Interfaces” workshop

The first edition of the joint Harvestore-SOIFIT worskhop “The Power of Interfaces: Fundamentals for Solid State Devices” will take place at the hystorical Royal Society in London next March 10th and 11th. Some of the most influential scientists in the field will be present…check out the program and sign up! https://www.imperial.ac.uk/events/95807/the-power-of-interfaces-fundamentals-for-solid-state-devices/