About the author Federico

Researchers’ Night 2020

Project partners participated in the online European Researchers’ Night 2020, organized in Barcelona. Here is the link to the video presentation (in Spanish).

Webinar “Hidrógeno. Vector energético de una economía descarbonizada” (spanish)

Our project coordinator Albert Tarancón has been hosted by Fundación Naturgy for a webinar on status and future of hydrogen technology. The book “Hidrógeno. Vector energético de una economía descarbonizada”, realized by IREC – Institut de Recerca en Energia de Catalunya has been presented. Here is the link to the video of the event. and for book download.

PhD position at LMGP/LEPMI Grenoble

Interested in being part of Harvestore? The Materials and Physical Engineering Laboratory (LMGP) and the Laboratory of Electrochemistry and Physical-Chemistry of Materials and Interfaces (LEPMI) in Grenoble offer a PhD project on design and characterization of advances energy materials for micro-cell applications. Check this out!

Atmospheric pressure Spatial Atomic Layer Deposition (AP-SALD)

AP-SALD is a rather recent alternative approach to ALD that is faster (up to two orders of magnitude) and less expensive (since it can be easily implemented at atmospheric pressure) than ALD.  This opens new fields of industrial applications for flexible and large substrates (OLEDs, flat displays, photovoltaic cells, etc).

In SALD, the precursors are dosed continuously in different locations (separation of precursors in space), thus eliminating the need for the purge steps of conventional ALD (where precursors are separated in time, Figure 1). This results in much faster deposition rates than conventional ALD (up to two orders of magnitude, reaching nm/s). In addition, SALD offers plenty of flexibility in terms of design and is fully compatible with high throughput processing methods such as roll-to-roll. Finally, because it can be implemented easily at atmospheric pressure, it can be readily scalable as well. As a result, SALD is receiving increasing interest and attention over the last years since it has the potential to become a widespread laboratory and industrial deposition method for multiple applications including electronics, optoelectronics, textiles, paper, etc. 

Figure 1.  Scheme of conventional (temporal) ALD and Spatial ALD

The Materials and Physical Engineering laboratory in Grenoble (LMGP, a mixed unit between the CNRS and Grenoble INP), partner of Harvestore, if one of the few groups to develop SALD around the world. The approach used is based on a gas injection manifold where the precursor and inert gas are distributed along parallel channels, the close proximity of the substrate ensuring and efficient separation of the precursors, as shown schematically in Figure 2.

Figure 2. Scheme of the close-proximity SALD approach used in LMGP.

The LMGP designs and develops its own systems, and currently has a first prototype that has been working since 2015, while a second one is currently being implemented for large area deposition (tens of cm2). The materials already available are ZnO, Al2O3, Al:ZnO, TiO2, MnO, Cu2O, and SiOx.

The SALD team is currently developing new materials to be applied to the deposition of components for micro harvestorers, and to demonstrate large-area, high –throughput fabrication of such devices.

More information on the research related to SALD in the LMGP can be found in the following links and references below:




  1. Muñoz-Rojas D, Maindron T, Esteve A, Piallat F, Kools JCS, Decams J. Speeding up the unique assets of atomic layer deposition. Mater Today Chem. 2019;12:96–120.
  2. Muñoz-Rojas D, Viet Huong Nguyen, Masse de la Huerta C, Jiménez C, Bellet D. Spatial Atomic Layer Deposition. In: Chemical Vapor Deposition for Nanotechnology. Intech open; 2019. OPEN ACCESS : https://www.intechopen.com/books/chemical-vapor-deposition-for-nanotechnology/spatial-atomic-layer-deposition
  3. Muñoz-Rojas D, MacManus-Driscoll J. Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics. Mater Horizons [Internet]. 2014; 1: 314–20.

Article by David Muñoz-Rojas.

“The power of Interfaces” workshop

The first edition of the joint Harvestore-SOIFIT worskhop “The Power of Interfaces: Fundamentals for Solid State Devices” will take place at the hystorical Royal Society in London next March 10th and 11th. Some of the most influential scientists in the field will be present…check out the program and sign up! https://www.imperial.ac.uk/events/95807/the-power-of-interfaces-fundamentals-for-solid-state-devices/

Joint project Harvestore-GoNano

The project has built up a collaboration with an ongoing H2020 project on Governing Nanotechnologies Through Societal Engagement “GoNano” (http://gonano-project.eu/) with an aim to identify potential flaws/untapped markets and opportunities. Particularly, the collaboration enables project co-creation between citizens, researchers, industry, civil society organisations, and policy makers across Europe to align future nanotechnologies with societal needs and concerns.  On October 30th, a joint workshop between the two projects has been organized at IREC, with the participation of several partners from Harvestore (IREC, ICL) and of professionals in the field as potential stakeholders.

News communication by Worldsensing

The project partner Worldsensing has released a news article for introduction and for describing their role in the project:


December appointments in Italy

Today we have been hosted by Prof. Lughi (Dept. of Engineering and Architecture) at the University of Trieste for a seminar on hydrogen-based technology, device and future applications. Tomorrow and on Wednesday we will participate in a Joint School on Scientific Data management.

European Researcher’s Night

Harvestore will be present with his “Power on your fingertip” activites during the European Researcher’s Night at Cosmocaixa forums in Barcelona and Zaragoza. A suitcase of fun! Download the program flyer here.